Archive for the PERBEKALAN AIR & LISTRIK Category

PENGENALAN PEMBANGKIT LISTRIK TENAGA NUKLIR (PLTN)

Posted in PERBEKALAN AIR & LISTRIK on April 22, 2010 by zeniad

Masyarakat pertama kali mengenal tenaga nuklir dalam bentuk bom atom yang dijatuhkan di Hiroshima dan Nagasaki dalam Perang Dunia II tahun 1945. Sedemikian dahsyatnya akibat yang ditimbulkan oleh bom tersebut sehingga pengaruhnya masih dapat dirasakan sampai sekarang.

Di samping sebagai senjata pamungkas yang dahsyat, sejak lama orang telah memikirkan bagaimana cara memanfaatkan tenaga nuklir untuk kesejahteraan umat manusia. Sampai saat ini tenaga nuklir, khususnya zat radioaktif telah dipergunakan secara luas dalam berbagai bidang antara lain bidang industri, kesehatan, pertanian, peternakan, sterilisasi produk farmasi dan alat kedokteran, pengawetan bahan makanan, bidang hidrologi, yang merupakan aplikasi teknik nuklir untuk non energi. Salah satu pemanfaatan teknik nuklir dalam bidang energi saat ini sudah berkembang dan dimanfaatkan secara besar-besaran dalam bentuk Pembangkit Listrik Tenaga nuklir (PLTN), dimana tenaga nuklir digunakan untuk membangkitkan tenaga listrik yang relatif murah, aman dan tidak mencemari lingkungan.

Pemanfaatan tenaga nuklir dalam bentuk PLTN mulai dikembangkan secara komersial sejak tahun 1954. Pada waktu itu di Rusia (USSR), dibangun dan dioperasikan satu unit PLTN air ringan bertekanan tinggi (VVER = PWR) yang setahun kemudian mencapai daya 5 Mwe. Pada tahun 1956 di Inggris dikembangkan PLTN jenis Gas Cooled Reactor (GCR + Reaktor berpendingin gas) dengan daya 100 Mwe.

Pada tahun 1997 di seluruh dunia baik di negara maju maupun negara sedang berkembang telah dioperasikan sebanyak 443 unit PLTN yang tersebar di 31 negara dengan kontribusi sekitar 18 % dari pasokan tenaga listrik dunia dengan total pembangkitan dayanya mencapai 351.000 Mwe dan 36 unit PLTN sedang dalam tahap kontruksi di 18 negara.

Perbedaan Pembangkit Listrik Konvensional (PLK) dengan PLTN

Dalam pembangkit listrik konvensional, air diuapkan di dalam suatu ketel melalui pembakaran bahan fosil (minyak, batubara dan gas). Uang yang dihasilkan dialirkan ke turbin uap yang akan bergerak apabila ada tekanan uap. Perputaran turbin selanjutnya digunakan untuk menggerakkan generator, sehingga akan dihasilkan tenaga listrik.

Pembangkit listrik dengan bahan bakar batubara, minyak dan g as mempunyai potensi yang dapat menimbulkan dampak lingkungan dan masalah transportasi bahanbakar dari tambang menuju lokasi pembangkitan. Dampak lingkungan akibat pembakaran bahan fosil tersebut dapat berupa CO2 (karbon dioksida), SO2 (sulfur dioksida) dan NOx (nitrogen oksida), serta debu yang mengandung logam berat. Kekhawatiran terbesar dalam pembangkit listrik dengan bahan bakar fosil adalah dapat menimbulkan hujan asam dan peningkatan pemanasan global.

Gambar 1

PLTN berperasi dengan prinsip yang sama seperti PLK, hanya panas yang digunakan untuk menghasilkan uap tidak dihasilkan dari pembakaran bahan fosil, tetapi dihasilkan dari reaksi pembelahan inti bahan fisil (uranium) dalam suatu reaktor nuklir. tenaga panas tersebut digunakan untuk membangkitkan uap di dalam sistem pembangkit uap ( Steam Generator)
dan selanjutnya sama seperti pada PLK, uap digunakan untuk menggerakkan turbingenerator sebagai pembangkit tenaga listrik. Sebagai pemindah panas biasa digunakan air yang disirkulasikan secara terus menerus selama PLTN beroperasi.

Proses pembangkitan listrik ini tidak membebaskan asap atau debu yang mengandung logam berat yang dibuang ke lingkungan atau melepaskan partikel yang berbahaya seperti CO2, SO2, NOx ke lingkungan, sehingga PLTN ini merupakan pembangkit listrik yang ramah lingkungan. Limbah radioaktif yang dihasilkan dari pengoperasian PLTN adalah berupa elemen bakar bekas dalam bentuk padat. Elemen bakar bekas ini untuk sementara bisa disimpan di lokasi PLTN sebelum dilakukan penyimpanan secara lestari.

Tentang Fisika Nuklir

Panas yang digunakan untuk membangkitkan uap diproduksi sebagai hasil dari pembelahan inti atom yang dapat diuraikan sebagai berikut :

Apabila satu neutron (dihasilkan dari sumber neutron) tertangkap oleh satu inti atom uranium-235, inti atom ini akan terbelah menjadi 2 atau 3 bagian/fragmen. Sebagian dari energi yang semula mengikat fragmen-fragmen tersebut masing-masing dalam bentuk energi kinetik, sehingga mereka dapat bergerak dengan kecepatan tinggi. Oleh karena fragmen-fragmen itu berada di dalam struktur kristal uranium, mereka tidak dapat bergerak jauh dan gerakannya segera diperlambat.

Dalam proses perlambatan ini energi kinetik diubah menjadi panas (energi termal). Sebagai gambaaran dapat dikemukakan bahwa energi termal yang dihasilkan dari reaksi pembelahan 1 kg uranium-235 murni besarnya adalah 17 milyar kilo kalori, atau setara dengan energi termal yang dihasilkan dari pembakaran 2,4 juta kg (2400 ton) batubara.

Selain fragmen-fragmen tersebut reaksi pembelahan menghasilkan pula 2 atau 3 neutron yang dilepaskan dengan kecepatan lebih besar dari 10.000 km per detik. Neutron-neutron ini disebut neutron cepat yang mampu bergerak bebas tanpa dirintangi oleh atom-atom uranium atau atom-atom kelongsongnya. Agar mudah ditangkap oleh inti atom uranium guna menghasilkan reaksi pembelahan, kecepatan neutron ini harus diperlambat. Zat yang dapat memperlambat kecepatan neutron disebut moderator.

Air Sebagai Pemerlambat Neutron (Moderator)

Seperti telah disebutkan di atas, panas yang dihasilkan dari reaksi pembelahan, oleh air yang bertekanan 160 atmosfir dan suhu 300 0C secara terus menerus dipompakan ke dalam reaktor melalui saluran pendingin reaktor. Air bersirkulasi dalam saluran pendingin ini tidak hanya berfungsi sebagai pendingin saja melainkan juga bertindak sebagai moderator, yaitu sebagai medium yang dapat memperlambat neutron. Neutron cepat akan kehilangan sebagian energinya selama menumbuk atom-atom hidrogen. Setelah kecepatan neutron turun sampai 2000 m per detik atau sama dengan kecepatan molekul gas pada suhu 300 0C, barulah ia mampu membelah inti atom uranium-235. Neutron yang telah diperlambat disebut neutron termal.

Reaksi Pembelahan Inti Berantai Terkendali

Untuk mendapatkan keluaran termal yang mantap, perlu dijamin agar banyaknya reaksi pembelahan inti yang terjadi dalam teras reaktor dipertahankan pada tingkat tetap, yaitu 2 atau 3 neutron yang dihasilkan dalam reaksi itu hanya satu yang dapat meneruskan reaksi pembelahan.

Neutron lainnya dapat lolos keluar reaktor, atau terserap oleh bahan lainnya tanpa menimbulkan reaksi pembelahan atau diserap oleh batang kendali. Batang kendali dibuat dari bahan-bahan yang dapat menyerap neutron, sehingga jumlah neutron yang menyebabkan reaksi pembelahan dapat dikendalikan dengan mengatur keluar atau masuknya batang kendali ke dalam teras reaktor.

Sehubungan dengan uraian di atas perlu digarisbawahi bahwa :

  • Reaksi pembelahan berantai hanya dimungkinkan apabila ada moderator.
  • Kandungan uranium-235 di dalam bahan bakar nuklir maksimum adalah 3,2 %.

Kandungan ini kecil sekali dan terdistribusi secara merata dalam isotop uranium-238, sehingga tidak mungkin terjadi reaksi pembelahan berantai secara tidak terkendali di dalamnya.

Radiasi dan Hasil Belahan

Fragmen-fragmen yang diproduksi selama reaksi pembelahan inti disebut hasil belahan, yang kebanyakan berupa atom-atom radioaktif seperti xenon-133, kripton-85 dan iodium-131. Zat radioaktif ini meluruh menjadi atom lain dengan memancarkan radiasi alpha, beta, gamma atau neutron.

Selama proses peluruhan, radiasi yang dipancarkan dapat diserap oleh bahan-bahan lain yang berada di dalam reaktor, sehingga energi yang dilepaskan berubah menjadi panas. Panas ini disebut panas peluruhan yang akan terus diproduksi walaupun reaktor berhenti beroperasi. Oleh karena itu reaktor dilengkapi dengan suatu sistem pembuangan panas peluruhan. Selain hasil belahan, dalam reaktor dihasilkan pula bahan radioaktif lain sebagai hasil aktivitas neutron. Bahan radioaktif ini terjadi karena bahan-bahan lain yang berada di dalam reaktor (seperti kelongsongan atau bahan struktur) menangkap neutron sehingga berubah menjadi unsur lain yang bersifat radioaktif.

Radioaktif adalah sumber utama timbulnya bahaya dari suatu PLTN, oleh karena itu semua sistem pengamanan PLTN ditujukan untuk mencegah atau menghalangi terlepasnya zat radioaktif ke lingkungan dengan aktivitas yang melampaui nilai batas ambang yang diizinkan menurut peraturan yang berlaku.

Keselamatan Nuklir

Berbagai usaha pengamanan dilakukan untuk melindungi kesehatan dan keselamatan masyarakat, para pekerja reaktor dan lingkungan PLTN. Usaha ini dilakukan untuk menjamin agar radioaktif yang dihasilkan reaktor nuklir tidak terlepas ke lingkungan baik selama operasi maupun jika terjadi kecelakaan.

Tindakan protektif dilakukan untuk menjamin agar PLTN dapat dihentikan dengan aman setiap waktu jika diinginkan dan dapat tetap dipertahanan dalam keadaan aman, yakni memperoleh pendinginan yang cukup. Untyuk ini panas peluruhan yang dihasilkan harus dibuang dari teras reaktor, karena dapat menimbulkan bahaya akibat pemanasan lebih pada reaktor.

  1. Keselamatan terpasangKeselamatan terpasang dirancang berdasarkan sifat-sifat alamiah air dan uranium. Bila suhu dalam teras reaktor naik, jumlah neutron yang tidak tertangkap maupun yang tidak mengalami proses perlambatan akan bertambah, sehingga reaksi pembelahan berkurang. Akibatnya panas yang dihasilkan juga berkurang. Sifat ini akan menjamin bahwa teras reaktor tidak akan rusak walaupun sistem kendali gagal beroperasi.
  2. Penghalang Ganda PLTN mempunyai sistem pengaman yang ketat dan berlapis-lapis, sehingga kemungkinan terjadi kecelakaan maupun akibat yang ditimbulkannya sangat kecil. Sebagai contoh, zat radioaktif yang dihasilkan selama reaksi pembelahan inti uranium sebagian besar (> 99%) akan tetap tersimpan di dalam matriks bahan bakar, yang berfungsi sebagai penghalang pertama.
    Selama operasi maupun jika terjadi kecelakaan, kelongsongan bahan bakar akan berperan sebagai penghalang kedua untuk mencegah terlepasnya zat radioaktif tersebut keluar kelongsongan. Dalam hal zat radioaktif masih dapat keluar dari dalam kelongsongan, masih ada penghalang ketiga yaitu sistem pendingin. Lepas dari sistem pendingin, masih ada penghalang keempat berupa bejana tekan dibuat dari baja dengan tebal ± 20 cm. Penghalang kelima adalah perisai beton dengan tebal 1,5-2 m. Bila zat radioaktif itu masih ada yang lolos dari perisai beton, masih ada penghalang keenam, yaitu sistem pengungkung yang terdiri dari pelat baja setebal ± 7 cm dan beton setebal 1,5-2 m yang kedap udara.
    Jadi selama operasi atau jika terjadi kecelakaan, zat radioaktif benar-benar tersimpan dalam reaktor dan tidak dilepaskan ke lingkungan. Kalaupun masih ada zat radioaktif yang terlepas jumlahnya sudah sangat diperkecil sehingga dampaknya terhadap lingkungan tidak berarti.

Gb. Sistem Keselamatan Reaktor dengan Penghalang Ganda

  1. Pertahanan Berlapis Disain keselamatan suatu PLTN menganut falsah pertahanan berlapis (defence in depth). Pertahanan berlapis ini meliputi : lapisan keselamatan pertama, PLTN dirancang, dibangun dan dioperasikan sesuai dengan ketentuan yang sangat ketat, mutu yang tinggi dan teknologi mutakhir; lapis keselamatan kedua, PLTN dilengkapi dengan sistem pengaman/keselamatan yang digunakan untuk mencegah dan mengatasi akibat-aibat dari kecelakaan yang mungkin dapat terjadi selama umur PLTN dan lapis keselamatan ketiga, PLTN dilengkapi dengan sistem pengamanan tambahan, yang dapat diperkirakan dapat terjadi pada suatu PLTN. Namun demikian kecelakaan tersebut kemungkinan terjadinya sedemikian sehingga tidak akan pernah terjadi selama umu uperasi PLTN.

Limbah Radioaktif

Selama operasi PLTN, pencemaran yang disebabkan oleh zat radioaktif terhadap linkungan dapat dikatakan tidak ada. Air laut atau sungai yang dipergunakan untuk membawa panas dari kondesnsor sama sekali tidak mengandung zat radioaktif, karena tidak bercampur dengan air pendingin yang bersirkulasi di dalam reaktor.

Gas radioaktif yang dapat keluar dari sistem reaktor tetap terkungkung di dalam sistem pengungkung PLTN dan sudah melalui sistem ventilasi dengan filter yang berlapis-lapis. Gas yang dilepas melalui cerobong aktivitasnya sangat kecil (sekitar 2 milicurie/tahun), sehingga tidak menimbulkan dampak terhadap lingkungan.

Pada PLTN sebagian besar limbah yang dihasilkan adalah limbah aktivitas rendah (70 – 80 %). Sedangkan limbah aktivitas tinggi dihasilkan pada proses daur ulang elemen bakar nuklir bekas, sehingga apabila elemen bakar bekasnya tidak didaur ulang, limbah aktivitas tinggi ini jumlahnya sangat sedikit.

Penangan limbah radioaktif aktivitas rendah, sedang maupun aktivitas tinggi pada umumnya mengikuti tiga prinsip, yaitu :

  • Memperkecil volumenya dengan cara evaporasi, insenerasi, kompaksi/ditekan.
  • Mengolah menjadi bentuk stabil (baik fisik maupun kimia) untuk memudahkan dalam transportasi dan penyimpanan.
  • menyimpan limbah yang telah diolah, di tempat yang terisolasi.

Pengolahan limbah cair dengan cara evaporasi/pemanasan untuk memperkecil volume, kemudian dipadatkan dengan semen (sementasi) atau dengan gelas masif (vitrifikasi) di dalam wadah yang kedap air, tahan banting, misalnya terbuat dari beton bertulang atau dari baja tahan karat.

Pengolahan limbah padat adalah dengan cara diperkecil volumenya melalui proses insenerasi/pembakaran, selanjutnya abunya disementasi. Sedangkan limbah yang tidak dapat dibakar diperkecil volumenya dengan kompaksi/penekanan dan dipadatkan di dalam drum/beton dengan semen. Sedangn limbah padat yang tidak dapat dibakar atau tidak dapat dikompaksi, harus dipotong-potong dan dimasukkan dalam beton kemudian dipadatkan dengan semen atau gelas masif.

Selanjutnya limbah radioaktif yang telah diolah disimpan secara sementara (10-50 tahun) di gudang penyimpanan limbah yang kedap air sebelum disimpan secara lestari. Tempat penyimpanan lembah lestari dipilih di tempat/lokasi khusus, dengan kondisi geologi yang stabil dan secara ekonomi tidak bermanfaat.

Gambar 3

Di intisarikan Oleh

www.batan.go.id,

Iklan

LIFES TRAW TAHUKAH ANDA,,,,,? ALAT SEDERHANA PENYELAMAT DUNIA

Posted in PERBEKALAN AIR & LISTRIK on April 5, 2010 by zeniad

Itulah nama produknya,,,,,

Kelihatan sederhana namun manfaatnya bagi mereka yang kekurangan air bersih sangatlah besar. Dengan LifeStraw air yang kotor dapat langsung diminum, namun tidak menyebabkan orang yang meminumnya menjadi sakit.

LifeStraw (Sedotan Kehidupan) adalah filter air yang dirancang oleh Vestergaard Frandsen dari Swiss.

Vestergaard Frandsen sendiri merupakan sebuah perusahaan Eropa berbasis Internasional yang bergerak dibidang kemanusiaan dan mengkhususkan diri dalam tanggap darurat atas permasalahan yang kompleks. Mereka juga membuat produk-produk untuk pengendalian penyakit.

Data-data mengenai LifeStraw:

  • Panjang: 31 cm, Diameter: 30 mm, Price: about $3.00
  • Model-model LifeStraw:
    1. LifeStraw Personal filter minimum 700 liter air, cukup untuk satu orang dan satu tahun.
    2. LifeStraw Family menyaring paling sedikit 18.000 liter air, menyediakan air minum yang aman untuk sebuah keluarga selama lebih dari dua tahun.
  • Lifestraw menghilangkan 99,9999% bakteri yang menular melalui air, 99,99% virus, dan 99,9% parasit.
  • Penyakit yang dapat dicegah antara lain difteria, kolera dan diare.
  • LifeStraw dapat menyaring hingga 700 liter air sebelum harus diganti.

Cara kerja LifeStraw

Semua proses ini dilakukan hanya dengan menghisap secara reguler, tidak beda jauh ketika menggunakan pipet minuman konvensional sehari-hari.

Inovasi-inovasi yang diberikan oleh LifeStraw sangat mengesankan sehingga disebut sebagai salah satu temuan terbesar di 2005 oleh Time Magazine dan memenangkan Index Award untuk inovasi di bidang desain yang akan secara signifikan memperbaiki hidup manusia.

Biaya yang murah dan imbas langsung yang bisa dimiliki oleh LifeStraw ketika mencapai orang-orang yang membutuhkan akan menjadikan alat ini sebagai alat yang sempurna untuk para kelompok-kelompok amal di dunia.

Dengan dikombinasikan dengan dengan upaya-upaya baru untuk menyediakan sumur dan waduk-waduk bagi masyarakat, LifeStraw bisa memberikan kontribusi langsung yang signifikan bagi krisis air global yang kita hadapi dengan mewujudkan Tujuan Pembangunan Milenium yakni mengurangi setengah jumlah orang yang tidak memiliki akses berkelanjutan terhadap air minum yang aman pada tahun 2015. LifeStraw juga bisa menjadi cara yang jitu untuk mengatasi kebutuhan mendesak akan air oleh para korban bencana alam seperti angin badai, gempa bumi dan lain-lain.

Di Sarikan Dari Berbagai Sumber

Pembangkit Listrik Tenaga Sampah

Posted in PERBEKALAN AIR & LISTRIK on Januari 29, 2010 by zeniad

Selama ini kita mengenal sampah sebagai suatu yang menjijikan dapat kita manfaatkan tetapi minim,selama ini kita mengelola sampah hanya sebatas menjadikannya sebagai kompos/pupuk alami dan dimanfaatkan sebagai bahan kerajinan, tetapi sampah diubah menjadi tenaga listrik,rasanya baru kali ini terdengar bayangkan jika ada PLTS (pembangkit Listrik tenaga sampah) kesannya sangat lucu.

Tetapi jangan kuatir Mimpi mengubah sampah dan limbah menjadi aliran listrik kian mendekati kenyataan, terlebih ketika para peneliti dari Universitas Minnesota Amerika Serikat menemukan kunci konversi sampah ke listrik(waw…….)











bagan aliran proses konversi sampah ke listrik

(www.pspincineration.co.uk/images/plant.jpg)

Baru-baru ini hasil penelitian tim Universitas Minnesota mendapati bahwa organisme bakteri yang mampu menghasilkan listrik bisa ditingkatkan produksi energinya dengan pasokan riboflavin- yang lazimnya dikenal dengan vitamin B-2.

Bakteri penghasil listrik itu bernama Shewanella, seringnya didapati di air dan tanah.

“Bakteri ini bisa mengubah asam susu (lactic acid) menjadi listrik,” kata Daniel Bond dan Jeffrey Gralnick dari Jurusan Mikrobiologi Institut Bio-Teknologi Universitas Minnesota yang memimpin penelitian.

Ini sangat membahagiakan buat kami, karena menuntaskan teka-teki biologi yang sangat fundamental, kata Bond. Ia menjelaskan, Para pakar selama sudah bertahun-tahun mengetahui bahwa Shewanella bisa menghasilkan listrik. Dan sekarang kami tahu bagaimana bakteri ini melakukannya.

Penemuan ini juga berarti bakteri Shewanellabisa memproduksi energi lebih banyak lagi bisa riboflavinditingkatkan jumlahnya. Selain itu penelitian tim UniversitasMinnesota ini juga membuka peluang bagi berbagai inovasi di bidang energi terbarukan dan pembersihan lingkungan.

Hasil penelitian ini dipublikasikan dalam jurnal ilmiah Proceedings of the National Academy of Sciencesedisi 3 Maret 2008. Tim penelitian yang lintas-disiplin ilmu ini menunjukkan bahwa bakteri tumbuh di elektroda yang secara alamiah menghasilkan riboflavin.

Karena riboflavinsanggup membawa elektron dari sel-sel hidup ke elektroda, maka angka produksi listrik pun bisa ditingkatkan menjadi 370 persen saat riboflavinditambah jumlahnya. Penambahan bahan bakar mikroba ini menggunakan bakteri serupa yang bisa menghasilkan listrik untuk membersihkan limbah air. Bakteri bisa membantu kita menurunkan biaya pabrik pengelolaan limbah air, kata Bond. Tapi untuk aplikasi yang lebih ambisius seperti listrik untuk transportasi rumah atau bisnis, masih kata Bond, dibutuhkan temuan ilmu biologi yang lebih mutahir dan pasokan bahan bakar sel yang lebih murah.

Lalu timbul pertanyaan, Bagaimana bakteri ini bisa menghasilkan listrik?

Secara alamiah, bakteri seperti Shewanella butuh mendapatkan dan melarutkan benda-benda logam seperti besi. Dengan kemampuan mengarahkan secara langsung elektron ke logam, membuat bakteri ini bisa mengubah kadar kimia dan tingkat ketersediaannya.

Bakteri sudah sejak miliar tahun lalu mengubah kadar kimia di lingkungan hidup kita, kata Gralnick.

Kemampuan mereka membuat besi menjadi zat yang terlarutkan adalah kunci dari proses siklus logam di lingkungan dan memainkan peran yang sangat penting buat kehidupan di Bumi, tambahnya.

Proses ini bisa berlaku terbalik untuk menghindari logam terkena kerosi, teruma buat logam-logam di kapal laut.

Sumber:

http://www.koranindonesia.com

PEMANFAATAN ENERGI OMBAK SEBAGAI PEMBANGKIT TENAGA LISTRIK PERTAMA DI DUNIA

Posted in PERBEKALAN AIR & LISTRIK on Agustus 13, 2009 by zeniad

Tahukah anda???

Untuk bisa melangsungkan hidupnya, manusia harus berusaha memanfaatkan sumber daya hayati yang ada di bumi ini dengan sebaik-baiknya. Akan tetapi penggunaan tersebut haruslah mempunyai tujuan yang positif yang nantinya tidak akan membahayakan manusia itu sendiri.

Kenyataanya, Indonesia memiliki garis pantai terpanjang kedua setelah Norwegia. Sayangnya potensi energi pantai yang ada belum banyak dimanfaatkan. Masalah yang terjadi dalam kebutuhan manusia adalah kesenjangan antara kebutuhan hidup serta persediaan energi. Seperti saat ini kebutuhan akan minyak semakin turun, dikhawatirkan 5 tahun mendatang kebutuhan akan energi akan habis, lalu bagaimana dengan nasib anak cucu kita nanti? Oleh karena itu perlu adanya pemanfaatan energi sumber daya hayati yang perlu dikembangkan saat ini.

BGambar tengah (1): Rumput laut mekanik yang disebut juga Biowave.

Sumber daya hayati yang ada di planet bumi ini salah satunya adalah lautan. Selain mendominasi wilayah di bumi ini, laut juga mempunyai banyak potensi pangan (beranekaragam spesies ikan dan tanaman laut) dan potensi sebagai sumber energi. Energi yang ada di laut ada 3 macam, yaitu: energi ombak, energi pasang surut dan energi panas laut.

Salah satu energi di laut tersebut adalah energi ombak. Sebenarnya ombak merupakan sumber energi yang cukup besar. Ombak merupakan gerakan air laut yang turun-naik atau bergulung-gulung. Energi ombak adalah energi alternatif yang dibangkitkan melalui efek gerakan tekanan udara akibat fluktuasi pergerakan gelombang.

Energi ombak dapat digunakan sebagai pembangkit tenaga listrik, seperti saat ini telah didirikan sebuah Pembangkit Listrik Bertenaga Ombak (PLTO) di Yogyakarta, yaitu model Oscillating Water Column. Tujuan didirikannya PLTO ini adalah untuk memberikan model sumber energi alternatif yang ketersediaan sumbernya cukup melimpah di wilayah perairan pantai Indonesia. Model ini menunjukan tingkat efisiensi energi yang dihasilkan dan parameter-parameter minimal hiroosenografi yang layak, baik itu secara teknis maupun ekonomis untuk melakukan konversi energi.

Dalam PLTO ini proses masuk dan keluarnya aliran ombak pada suatu ruangan tertentu (khusus) dapat menyebabkan terdorongnya udara keluar dan masuk melalui sebuah saluran di atas ruang khusus tersebut. Apabila diletakkan sebuah turbin di ujung saluran tersebut, maka aliran udara yang keluar masuk akan memutar turbin yang menggerakkan generator. Kelemahan dari model ini adalah aliran keluar masuk udara dapat menimbulkan kebisingan, akan tetapi karena aliran ombak sudah cukup bising umumnya ini tidak menjadi masalah besar.

FGambar kanan (2): Sirip ekor ikan hiu buatan yang disebut Biostream.

Selain model Oscillating Water Column, ada beberapa perusahaan & lembaga lainnya yang mengembangkan model yang berbeda untuk memanfaatkan ombak sebagai penghasil energi listrik, antara lain:

1.   Ocean Power Delivery; perusahaan ini mendesain tabung-tabung yang sekilas terlihat seperti ular mengambang di permukaan laut (dengan sebutan Pelamis) sebagai penghasil listrik. Setiap tabung memiliki panjang sekitar 122 meter dan terbagi menjadi empat segmen. Setiap ombak yang melalui alat ini akan menyebabkan tabung silinder tersebut bergerak secara vertikal maupun lateral. Gerakan yang ditimbulkan akan mendorong piston diantara tiap sambungan segmen yang selanjutnya memompa cairan hidrolik bertekanan melalui sebuah motor untuk menggerakkan generator listrik. Supaya tidak ikut terbawa arus, setiap tabung ditahan di dasar laut menggunakan jangkar khusus.

2.   Renewable Energy Holdings; ide mereka untuk menghasilkan listrik dari tenaga ombak menggunakan peralatan yang dipasang di dasar laut dekat tepi pantai sedikit mirip dengan Pelamis. Prinsipnya menggunakan gerakan naik turun dari ombak untuk menggerakkan piston yang bergerak naik turun pula di dalam sebuah silinder. Gerakan dari piston tersebut selanjutnya digunakan untuk mendorong air laut guna memutar turbin.

3.   SRI International; konsepnya menggunakan sejenis plastik khusus bernama elastomer dielektrik yang bereaksi terhadap listrik. Ketika listrik dialirkan melalui elastomer tersebut, elastomer akan meregang dan terkompresi bergantian. Sebaliknya jika elastomer tersebut dikompresi atau diregangkan, maka energi listrik pun timbul. Berdasarkan konsep tersebut idenya ialah menghubungkan sebuah pelampung dengan elastomer yang terikat di dasar laut. Ketika pelampung diombang-ambingkan oleh ombak, maka regangan maupun tahanan yang dialami elastomer akan menghasilkan listrik.

4.   BioPower Systems; perusahaan inovatif ini mengembangkan sirip-ekor-ikan-hiu buatan dan rumput laut mekanik untuk menangkap energi dari ombak. Idenya bermula dari pemikiran sederhana bahwa sistem yang berfungsi paling baik di laut tentunya adalah sistem yang telah ada disana selama beribu-ribu tahun lamanya. Ketika arus ombak menggoyang sirip ekor mekanik dari samping ke samping sebuah kotak gir akan mengubah gerakan osilasi tersebut menjadi gerakan searah yang menggerakkan sebuah generator magnetik. Rumput laut mekaniknya pun bekerja dengan cara yang sama, yaitu dengan menangkap arus ombak di permukaan laut dan menggunakan generator yang serupa untuk merubah pergerakan laut menjadi listrik.

  HGambar kiri (3): Pelamis Wave Energy Converters dari Ocean Power Delivery. 

Namun kekurangan dalam pemanfaatan energi ombak sebagai pembangkit listrik ini adalah

1.   Bergantung pada ombak; kadang dapat energi, kadang pula tidak,

2.   Perlu menemukan lokasi yang sesuai dimana ombaknya kuat dan muncul secara konsisten. Akan tetapi jika kita memanfaatkan energy ini maka kelebihan yang kita dapatkan adalah energi bisa diperoleh secara gratis, tidak butuh bahan bakar, tidak menghasilkan limbah, mudah dioperasikan dan biaya perawatan rendah, serta dapat menghasilkan energi dalam jumlah yang memadai.

Oleh karena itu mengingat potensi yang telah dmiliki oleh  ombak begitu besar, maka sebaiknya mulai sekarang kita perlu memanfaatkan energi ombak ini sebagai pembangkit tenaga listrik guna memenuhi kebutuhan akan energy listrik di hari mendatang, dengan mengembangkan model tersebut di seluruh pesisir pantai Indonesia.

Diintisarikan Dari Berbagai Sumber

Memanfaatkan energi yang tersimpan dalam arus tenang sungai dan laut dengan VIVACE

Posted in PERBEKALAN AIR & LISTRIK, Uncategorized on April 3, 2009 by zeniad

Arus laut dan sungai yang mempunyai kecepatan rendah sangat banyak terdapat di berbagai belahan dunia. Meski hanya mempunyai kecepatan di bawah 6 km/jam atau sekitar 2 m/detik, energi yang tersimpan di dalamnya bisa dimanfaatkan sebagai sumber energi alternatif. Sementara turbin dan kincir air konvensional yang ada saat ini membutuhkan rata-rata 3-4 m/detik.

Para ahli di University of Michigan telah membuat mesin yang bekerja menyerupai ikan dengan mengubah getaran merusak yang ada dalam aliran menjadi energi yang terbarukan.

Mesin yang dinamakan VIVACE, dikenal sebagai perangkat pertama yang bisa mengambil energi dari sebagian besar arus air laut dan sungai di seluruh dunia, saat ini sudah bisa dilihat paparan detilnya pada Journal of Offshore Mechanics and Arctic Engineering.

VIVACE, yang merupakan kependekan dari Vortex Induced Vibrations for Aquatic Clean Energy, menerapkan prinsip hidrokinetik yang mengandalkan pada ”vortex induced vibrations”, suatu getaran akibat dari adanya pusaran-pusaran dalam suatu fluida, seperti air atau udara.

Pada setiap obyek yang berada di arus fluida, akan timbul semacam pusaran-pusaran, bisa dikatakan turbulensi yang berada di bagian depan dan belakang obyek tersebut. Getaran-getaran yang terjadi pada pusaran-pusaran arus tersebut seringkali menyebabkan kerusakan pada anjungan minyak, dermaga dan bangunan-bangunan yang ada di pantai.

”Selama lebih dari 25 tahun, para ahli berusaha untuk menekan dan mengurangi getaran-getaran yang terjadi. Tetapi, kini sebaliknya di University of Michigan, kami melakukan sebaliknya. Kami berusaha untuk mengambil energi yang ditimbulkannya,” ujar Michael Bernitsas, professor di Teknik Kelautan dan Arsitek Perkapalan di universitas tersebut.

Ikan sudah dikenal lama mempunyai teknologi untuk memanfaatkan pusaran-pusaran menjadi energi tambahan untuk berenang dengan cepat. Bentuk tubuhnya yang streamline, didesain khusus untuk mengatasi masalah pusaran air yang terjadi dan menumpangkan dirinya pada getaran-getaran yang ditimbulkan oleh ikan-ikan lainnya ketika berenang dalam kelompok.

Prototip yang saat ini dimiliki University of Michigan memang tidak menyerupai bentuk ikan, tetapi di masa mendatang prototipnya akan mengadopsi semua teknologi yang dimiliki ikan, mulai dari bentuk ekor hingga kepala yang ada padanya.

Menurut Bernitsas, hanya dengan menggunakan VIVACE berukuran sepanjang trek untuk jogging dan setinggi rumah dua lantai, sudah cukup untuk melistrik 100.000 rumah. Dan berdasar studi terakhir para peneliti tersebut untuk masalah kelayakannya, Bernitsas mengatakan besaran harga listrik yang dihasilkan akan berkisar 5,5 sen dolar per kWh. Listrik dari energi angin saat ini berharga 6,9 sen dolar per kWh, sedangkan listrik dari energi matahari berharga antara 16 hingga 48 sen dolar per kWh tergantung lokasi, sedangkan listrik dari nuklir berharga 4,6 sen dolar per kWh.

Saat ini VIVACE dikembangkan secara komersial oleh Vortex Hydro Company, perusahaan yang dibuat oleh Michael Bernitsas.

Sumber : Energy News.com

Belanda miliki pembangkit listrik biomassa berbahan bakar kotoran ayam

Posted in PERBEKALAN AIR & LISTRIK on April 2, 2009 by zeniad

Gerda Verburg, menteri pertanian, lingkungan dan kualitas pangan Belanda, belum lama ini meresmikan pembangkit listrik biomassa terbesar di dunia yang menggunakan bahan baku kotoran ayam.

Proyek senilai € 150 juta dimiliki dan dioperasikan oleh beberapa perusahaan, yaitu Delta, ZLTO, Austrian Energy & Environment A.G.. Fasilitas tersebut bisa menghasilkan listrik sebesar 270 million kWh pertahunnya atau cukup untuk 90.000 rumah.

Pembangkit yang berkapasitas 38MW tersebut merupakan solusi yang tepat untuk masalah lingkungan di Belanda. Mengatur dan mengolah sampah tersebut membutuhkan biaya yang sangat tinggi. Dengan kebutuhan bahan baku 440.000 ton kotoran ayam setiap tahunnya, maka setidaknya telah mengurangi sepertiga dari jumlah total kotoran ayam yang dihasilkan.

Tidak berbeda jauh dengan negara-negara di Eropa, kotoran berbagai jenis binatang bisa membahayakan lingkungan. Belanda menghasilkan 1,2 juta ton kotoran ayam setiap tahunnya. Hingga kini, sebanyak 800.000 ton diproses dengan biaya tinggi. Pembangkit listrik yang digunakan menghasilkan abu sisa pembakaran yang mengandung fosfor dan kalium yang sangat untuk pupuk.

Sumber : energy news.com

Pembangkit Listrik Tenaga Surya

Posted in PERBEKALAN AIR & LISTRIK on Maret 4, 2009 by zeniad

pv_modul

Solar cell atau sel surya merupakan lembaran yang terdiri dari bahan semikonduktor yang berfungsi mengubah cahaya matahari (surya) menjadi energi listrik. setelah menjadi energi listrik, kita bisa memanfaatkannya untuk berbagai kebutuhan seperti penerangan, televisi dll maupun untuk usaha.

mengenai biaya, sistem pembangkit listrik tenaga surya ini membutuhkan beaya awal yang relatif besar, selain karena harga panel sel surya yang masih mahal, juga efisiensinya masih relatif rendah. sehingga masih sedikit yang memanfaatkannya. Namun akhir-akhir ini banyak orang yang tertarik menggunakan sel surya karena dengan cepatnya teknologi semikonduktor, sel surya menjadi lebih murah, efisiensi lebih tinggi dan kapasitas lebih besar, juga keuntungan ramah lingkungan. selain itu, tidak adanya investasi dibahan bakar, sangat memungkinkan dalam jangka panjang sel surya mampu bersaing dengan sumber energi BBM atau bahkan lebih murah.

Untuk instalasi/pemasangan sel surya dirumah-rumah, sel surya dapat diletakkan diatap rumah, kemudian dengan perantara inverter, bisa langsung disambung ke beban dan ke baterai penyimpan standar 12 V dengan kapasitas disesuaikan dengan kebutuhan. pada siang hari baterai akan menyimpan energi dari sel surya untuk digunakan pada malam harinya. Sel surya juga dapat digunakan untuk menghemat rekening listrik, jika pemakai masih berlangganan listrik ke PLN, karena dengan alat tertentu, penggunaan listrik PLN hanya digunakan jika daya dari sel surya tidak mencukupi kebutuhan. untuk sistem yang paling sederhana, sel surya dapat menghasilkan daya sekitar 4 lampu pijar (1 lembar panel sel surya ada yang berkapasitas 50Wp dan 80Wp) dan sistem ini dapat dikembangkan sesuai dengan kebutuhan pemakai dengan menambah panel-panel sel surya. contoh instalasi sel surya dapat dilihat pada gambar dibawah ini :

Bagaimana dengan perawatan?

Perawatan pembangkit listrik tenaga surya (PLTS) lebih sering diperlukan pada baterai, jika penggunaan dan perawatan sesuai dengan aturan, rata-rata umur baterai bisa awet sampai 5 tahun, sedangkan biaya perawatan lainnya cenderung sedikit dan murah.

Sumber dari BPPT